
ON THE TESSERAL-
HARMONICS RESONANCE
PROBLEM IN ARTIFICIAL-
SATELLITE THEORY
B. A. ROMANOWICZ

/(NASA-CR-142672) ON THE TESSERAL-HARMONICS N75-21310
RESONANCE PROBLEM IN ARTIFICIAL-SATELLITE
THEORY Special Report (Smithsonian
Astrophysical Observatory). 55 p HC $4.25 Unclas

G3/13 18655

Smithsonian Astrophysical Observatory
SPECIAL REPORT 365



Research in Space Science
SAO Special Report No. 365

ON THE TESSERAL-HARMONICS RESONANCE

PROBLEM IN ARTIFICIAL-SATELLITE THEORY

Barbara A. Romanowicz

March 28, 1975

Smithsonian Institution
Astrophysical Observatory

Cambridge, Massachusetts 02138

412-090



TABLE OF CONTENTS

Page

ABSTRA.CT........................ ............. v

1 INTRODUCTION ..................................... 1

2 CHOICE OF THE DISTURBING FUNCTION AND EQUATIONS OF
MOTION ... ...... ...... ........................ 3

2. 1 Resonant Part of a Tesseral Harmonic ................. 5

2.2 The Equations of Motion .............................. 8

3 HORI'S PERTURBATION METHOD BY LIE SERIES ............. 11

4 DETAILED EXPRESSIONS OF THE PERTURBATIONS .......... 25

4. 1 Expression of S1/ 2 . . . . . . . .. . . .  .. . . . . . . . . . . . . . . .  2 5

4.2 Expression of Z1 and Its Derivatives.......... ........ 29

4.3 Expression of Z 2 and Its Derivatives ................... 33

5 REMOVAL OF LONG-PERIOD TERMS ..................... 41

6 REFERENCES AND BIBLIOGRAPHY ....................... 47

APPENDIX A: Derivatives of D(kl) and z(kl) ............ .... . A-i

iii



ABSTRACT

The longitude-dependent part of the geopotential usually gives rise only to short-

period effects in the motion of an artificial satellite. However, when the motion of

the satellite is commensurable with that of the earth, the path of the satellite repeats

itself relative to the earth and perturbations build up at each passage of the satellite

in the same spot, so that there can be important long-period effects.

In order to take these effects into account in deriving a theoretical solution to the

equations of motion of an artificial satellite, it is necessary to select terms in the

longitude-dependent part of the geopotential that will contribute significantly to the

perturbations. We have tried to make a selection that is valid in a general case,

regardless of the initial eccentricity of the orbit and of the order of the resonance.

The solution to the equations of motion of an artificial satellite, in a geopotential

thus determined, is then derived by using Hori's method by Lie series, which, by its

properties regarding canonical invariance, has proved advantageous in the classical

theory.

RESUME

La partie du geopotentiel, d'pendant de la longitude, ne provoque

g6neralement que des effets ' courte periode dans le mouvement d'un satellite

artificiel. Cependant, quand le mouvement du satellite est commensurable

avec celui de la terre, le parcours du satellite se repete par rapport ' la

terre et les perturbations s'ajoutent a chaque passage du satellite au mcme

endroit, et peuvent ainsi crier d'importants effets a longue periode.
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Pour tenir compte de ces effets en d6rivant une solution th6orique des

6quations du mouvement d'un satellite artificiel, il est n6cessaire de choisir

ceux des termes de la partie du g6opotentiel d6pendant de la longitude, qui

contribueront d'une fagon significative aux perturbations. On a essay6 de

faire un choix qui soit valable pour le cas g6neral, quelques soient la pre-

miere excentricit6 de l'orbite et l'ordre et l'ordre de la r~sonance.

On a ensuite derive la solution des 6quations du mouvement d'un satellite

artificiel dans un geopotentiel ainsi determine, en employant la m6thode de

Hori par la s6rie de Lie, qui a et6 prouvee avantageuse dans la theorie

classique, grace ' ses propri6tes concernant l'invariance canonique.

KOHC1EKT

3aBHcHay OT OJPFOTbI COCTaBHIOTaf reonoTeHUana O6bIMHO

BbI3bIBaeT JILZBE KOPOTKOnepHOAHONe H3MeHeHHI B ABI-eHHM HCKyCCTBeH-

HOPO CHyTHHKa 3eMJrH. O0HaiKO, ecOIH ABHxceHMe HCKyCCTBeHHOPO

CHyTHHMK COH3MeHMO C ABHKeHHeM 3eMH, TO HyTb HCKyCCTBeHHOPO

CHyTHMKa OTHOCHTejibHO 3eMJ1i m nepTypCauH, HOCTpOeHHBIX Ha

KaxJOM OTPe3Ke EyTH HCKyCCTBeHHOFO CHyTHHKa B TOHR e ToqKe,

nOBTOPaeTCg, TaK MTO BO3eHCTB H yxe MOFyT OITB OJIrOnepHOz-

HbIMH.

Anj yTeTa 3THX BO3zeiCTBH HpH HnOJy-LeHHH TeopOTHMeCKOPO

pemeHHs ypaBHeHH ABHwKeHHR HCKyCCTBeHHOPO CHyTHHKa HeoCxogHMO

BbICpaTE Te TnJIeHbI 3aBHCqe2 OT OJPFOTb COCTaBioIei reOnOTeH-

ULjana KOTOpble HBJrnK)TCH Ba)KHOI qaCTBIO nepTyp6a.I . MVI TbITaJHCb

OCyieCTBTEb BbICOP TaKHM OCpa30M, 1TOCbI OH FOAHzJCH AIR oCieFo

CJyMas, B He3aBMCHMOCTH OT HaqajnbHOrO 3KCueHTPHCHTeTa H HOpHEKa

pe3OHaHCa.

3aTeM B reOnOTeHHane, orpegeneHHOM TaKHM CrOCOOM, BbI-

BOgHTcH pemeHHe ypaBHeHHV aBH)eKHHE HCKyCCTBeHHOPO CHyTHHKa HO
MeToAYy XopH c noMoLbi cepaH JIH. 3TOT MeTOZ OKa3ajicH One3HIM

B KjaCCHqeCKO TeopHH jiaroAapH CBOeP yCTaHOBHBeRCH HeH3MeH-

HOCTH.

Vi



ON THE TESSERAL-HARMONICS RESONANCE

PROBLEM IN ARTIFICIAL-SATELLITE THEORY

Barbara A. Romanowicz

1. INTRODUCTION

If the gravitational potential of the earth is expanded in terms of Legendre poly-

nomials and functions, then in order to obtain a good approximation in the determination

of the orbit of an artificial satellite, it is usually sufficient to consider the zonal, lon-

gitude-free terms of the expansion. However, the influence of the tesseral terms

becomes important in the case when the mean motion of the satellite and the rate of

rotation of the earth around its axis are in a simple ratio.

This problem has been examined from different points of view. Morando (1963)

considered the particular, important case of a 24-hour satellite; Allan (1967, 1973)

worked out perturbations due to resonance in a more general case and to the first

order, by using Lagrange's equations. On the other hand, Garfinkel (1974) considered

the abstract, mathematical problem of "ideal resonance. " We have attempted to derive

expressions for the perturbations in the motion of an artificial satellite due to the most

general tesseral-harmonics resonance. The calculations are carried out to order 3/2

in the small parameter of the expansion of the perturbing function, and the perturbation

method used is that of Hori, which is canonically invariant and avoids mixing of old and

new variables, as opposed to the generally used method of Von Zeipel.

This work was supported in part by Grant NGR 09-015-002 from the National Aeronautics
and Space Administration.
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2. CHOICE OF THE DISTURBING FUNCTION AND EQUATIONS OF MOTION

The gravitational potential of the earth at exterior points can be expressed as

follows:

U(r, 0, )= ~ - J n Pn(cos 0) + Jn,m ( n (cos 0) cos m(X-kn,a

n=2 n=2 m=l
(1)

where (r, 0, X) are spherical polar coordinates relative to the center of mass of the earth,

the axis of rotation being the pole of coordinates; p is the gravitational constant G times

the mass of the earth; R is the mean equatorial radius of the earth; Pn (z) is the nt h

Legendre polynomial; Pn,m (z) are associated Legendre functions:

dn Pn (z)
P (z) =(1- z2m/2 n

n, m dZn

and J and J are dimensionless coefficients related to the normalized coefficientsn n,m
C S by:n, m' n, m

Jn m = n,m /2(2n+ 1) (n-m)! /(n+m)!' m 0 ,

-Jn = Cn,0 = 2/2 Cn, 0  ' (2)

J cos m(X -n, ) = C cos mX + S sin mX
n,m n, m n,m n,m

It can be assumed that the largest perturbing forces are due to the leading zonal

harmonic, which contains J2 and corresponds to the oblateness of the earth. The

remaining zonal harmonics have much smaller effects and are not considered here.

The tesseral harmonics, containing Jn, are the longitude-dependent terms and
n, m'

usually give rise only to short-period effects because they all contain the mean anomaly
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and the sidereal angle in their arguments. In the case of resonance, however, a cer-

tain number of these terms can produce effects of large amplitude and very long period.

It is therefore necessary to select appropriately those tesseral harmonics to be

included in our disturbing function.

The general tesseral harmonic can be developed in terms of the osculating elliptic

elements (a, e, I, 0, w, M), referred to the equator of the earth, in the form (Kaula,
1966):

n+1
Vnm = n p=n , m, p(I) Gn, p q(e) os (n - 2p)w + (n-2p+q)M

p=0 q

+ m(Q - vt - Xn, m)l (3)

where v is the angular velocity of the rotation of the earth, t is the time, and F (I)n, m, p
and Gn, p, q(e) are, respectively, the inclination and eccentricity functions as defined

by Kaula (1966). The functions Gn, p, q(e) are of order Iql in eccentricity.

Resonance occurs when a pair (a, p) of mutually prime integers exists such that
the satellite performs p nodal periods while the earth rotates a times relative to the
precessing satellite's orbit plane. This can be expressed by

a( + ) = (v - ) ,(4)

where W, M, and 2 are the rates of change with time of w, M, and 0, respectively.
The corresponding slowly varying arguments are of the form

kla, pf + const ,

where

4 , p = a(w + M) + p(Q - vt)

is called the resonant variable and k = 1, 2, 3, ...

4



Considering that L) is a small quantity and that the general argument in a tesseral

harmonic is

4= (n-2p)w+ (n-2p+q)M+m( - vt-Xn, m )

we shall select the tesseral harmonics by keeping those containing arguments such

that

n - 2p + q= kla ,

m=k= 1,2,3,... (5)
m= k3 ,1

Since n - m and since lower order tesseral harmonics are bound to have larger

effects because of the factor (R/r)n, where R/r < 1, it can be assumed that it is

enough to consider only the cases kl = 1, 2, and 3.

If k 1 = 1, then m = p, and the tesseral harmonics to be considered are

Vp+kOp , k0 = 0, 1,2,...

In a general manner, the tesseral harmonics to be kept are

VklP+kO, k 1

where k 1 = 1, 2, 3,... and for each k 1 , the index k 0 takes values 0, 1, 2,...

2. 1 Resonant Part of a Tesseral Harmonic

Once we have decided which tesseral harmonics to keep for our disturbing func-

tion, we then need to extract for each its most important "resonant" part.

5



If Vn, m is a selected tesseral harmonic, with n = klP + k 0 and m = klP, we look

for terms containing "resonant" arguments by solving equation (5); that is, since we

already know m = klP, we have

n-2p+q=kla,

or, in this case,

k l (p-a) +k 0 =2p-q .

As the condition 0 - p - klP + kO must be satisfied, the following pairs (p, q) are

solutions:

p= 1 = kl(a - p) - k + 2

(6)

p=x , q=k l (a-p)-k 0 +2x

p=klp+ko , q=k l (a + p ) + k o ,

and the resonant part of the tesseral harmonic V is
n, m

pkl+k
0

Rn, m a= Jn, m x= n, m, p(I) Gn, pxx(e) cos (k1 a, p-qx - mk m)
a x=0 n, , P nm

where (7)

qx = kl(a - p) - k 0 + 2x

and

px x

Thus,
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V =R + V'
n,m n, m n, m

where V' is the residual, the effect of which is much smaller than that of R .n, m n, m

It will be convenient to express the sum of the resonant parts of all the selected

tesseral harmonics in the following manner:

3

ZRn, m= E D(kl) cos 2e 1 (k1 )

kl=1

where

D(kl) cos 2 1 (k1)= k3+k,k 1P ,
ko(k1 )

the sum over kO(kl) meaning that we have taken into account all the values of kO when k 1
has a given value. In order to obtain D(kl) and 0l(k), we can write

pRn
S(kl'k0)=-- n+lnm , n=klP+k 0 , m=klP

a

A(kl k0, x) = Fn, m, x(I) Gn, x, qx(e) , (8)

x=n

D(kl) exp 2il(kl) = E S(k 1, k0 ) A(k 1, kO, x) exp i(kl a,~  - qw - klPXn, m)
kO(k 1 ) x=0

where

qx= kl(a- p ) -k 0 
+ 2x

If we write

Ak 1, k = klP Xklj+kO, kl

and
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201(kl ) = kla, - kl(a - P)W + (kl )

then

n

D(kl) exp io(kl) = S(k 1 ,k 0 ) E A(k 1, k,x) exp i (k0 -2x) - Akl k0
k 0 (kl) x=0

Thus,

x=klp+kO

B(kl) = D(kl) cos 0(kl) = E S(k 1, k 0 ) A(k 1, k0, x) cos (kO - 2x)w - Akl, k] (9a)

k0  x=0

.x=klP+k
0

C(kl) = D(k) sin (k)= E E S(kl k0) A(k 1, kO, x) sin [(k0 - 2x)w - Ak 1, kO] (9b)
k x=O 0

D(k 1
) 2 = B(k 1 )2 + C(k 1

) 2  (9c)

in which D(kl) and O(kl) are functions of a, e, I, and 2. Appendix A gives expressions

for the first and second derivatives of D(kl) and 4(kl) with respect to the canonical set
of Delaunay variables.

Finally, the potential in which the satellite moves is taken to be

v=_-J P cR +V ' (10)V = - J2 P2(cos ) + Rn, m + Vn, m

the sums being taken over all the tesseral harmonics selected.

2.2 The Equations of Motion

If we consider the canonical set of Delaunay variables,

LD =Vj , GD= pa(1-e 2 ) , HD = GD cos i
(11)

ID = M , gD = W , hD ,

8



then the equations of motion of the satellite are

dLD aFD dGD aF D  dHD_ aF D

dt lD  dt agD  dt D
(12)

di D  FD dg D  FD dhD _ D
dt LD ' dt G D  ' dt 8H D

where FD is the Hamiltonian of the problem:

2
FD = 2 + F + F (13a)

2 LD

where

1- J2 1
3 P 2 (cos O) , (13b)

r

which can be expressed in Delaunay variables, and

F 2 = Z Vn, m (13c)

Here, the Hamiltonian FD depends explicitly on time. To avoid this, we can perform

a canonical transformation so that the new angular variables will be

S= ID ' g=D ' h= hD- t

To find the new momenta and the new Hamiltonian, we have to solve

L di + G dg + H dh - LD di - GD dg - HD dh- (F D - F) dt= dV

where dV is the differential of a function. We keep the solution corresponding to

dV - 0 as follows:

9



L= LD

G =GD

H = HD

F = FD + vH

The equations of motion then become

dL aF dG 8F dH aF
dt al ' dt 8g dt ah

(14)
d aF dg = _ aF dh aF
dt aL ' dt G dt aH

with F= F0 + F 1 + F 2:

2
F - + vH

2L

R2 [1H 3/ Hi
F1= -J2 3 2  4 cos 2u (15)

r G2 G

F2 = Vn, m

in the above, u = g + f, and f is the true anomaly.

The Hamiltonian is now expanded in terms of powers of the small parameter

J2

F 1 = O(J 2 ) ,

F2 = O(J 2 )

10



3. HORI'S PERTURBATION METHOD BY LIE SERIES

In order to remove the variables I and h from the Hamiltonian, we shall apply

Hori's method by the use of Lie series (Hori, 1966; Aksnes, 1970).

The greatest advantage of this method is the fact that the Poisson brackets that

appear are canonically invariant, which means that each bracket can be calculated in

terms of the most convenient set of canonical variables. Also, this method avoids

mixing old and new variables.

Let us consider a system of canonical equations

dx. dy
dt ' dt j= 1,...,n (16)

where the Hamiltonian F is developed in powers of a small parameter E,

00

F=Z Fk , Fk O(Ek)

k=o

and let us also consider a Lie transformation (Hori, 1966)

(xj, yj) (x , y) ,

S aS 1 S 1 a S
x.=x:+ ,- S - s+ - S S+...
j 3 8y 2 y' 6 ay' '

Yj x 2 -- , , S , S +...

ORIGINAL PAGE IS
OF POOR QUALITY
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where { , } are Poisson brackets and S is a function of (x', y') of order 1 in E:

o00

S ES
K •

K=1

Then, if f(x, y) is a function of (xj, yj), j = 1, n, it can be expressed in terms of the new

variables (x!, yf) as follows:

f(x, y) = f(x', y') + {f, S} + {{ f, S}, S} + { {{ f, S}, S}, S} + ..

The equations of motion then become

dx' dy'
SF' _ F'(17)

dt ' ' dt x (17)

where F' is the new Hamiltonian:

o00

F'= Fk

k=O

If we assume that F does not depend explicitly on time t, we can write the energy

integral

F(x,y)= F'(x', y')

Expanding in terms of E and collecting terms of the same order of magnitude, we

obtain

F0 = F '

F 1 + {F 0, S1} = F , (18)

{F0, S2 + (F+ F', S}1 + F2=.F 2

12



In order to average these equations, we introduce a pseudo time t':

dx' 8F dy 8F
1 0 1= 0

dt' - ay dt' ax'

If this system has a solution, then

dSk
{F0, Sk }= dt' , k 1

and if A(t') is a periodic function of t', with period T, then

T

A s = A(t') dt' (19a)

0

is the secular part of A and

A = A - A (19b)

is the periodic part of A.

We can remove t' from F' by applying the averaging technique [eqs. (19)] to

equations (18) (Hori, 1966; Aksnes, 1970). Then Sk and Fk are uniquely determined

by the following set of equations:

F' = F0

F' = F1 1s

S1 = fFp dt' , (20)

F 2 = F2s { + F, S s

S2 = F2p F 1 
+ F' S 1} dt',

13



In the present case,

F 2 = D(kl) cos 2 1 (k1) + V, m
k
1

and the pseudo time t' is defined by

d 8F 2

dt' aL' L, 3

dh' 8Fo
dt' VH'

so that

3  1
dt'= d' - dh' (21)

In the process of calculating S2 , we have to evaluate the following integral:

I k)co2D(k 1 ) sin 2e'(k1 )

D(kl) cos 291 1) dt'= 26

where

L 3 a-VP k

In the case of resonance of order (a, p),

2
n = -

L,3 a

where n is the mean motion of the satellite; thus, 6 is a small quantity appearing in the

denominator, and the preceding method cannot be used.

14



To avoid this situation, we shall introduce a procedure that is commonly used in

different resonance problems (Garfinkel, 1973; Hori, 1960). The method consists

of developing the Hamiltonian and the determining function S in powers of the square

root of the small parameter:

S= S 1/ 2 + S1 + S3/2 + S2 +

If F' is the new Hamiltonian, then

F'= F + F 1 + F' + F+ ...0 - 1 3/2 2

and equations (18) now become

F'= F + {F0, S1/2 + {F 0 , S1) + {F, S3/2} + {F 1 , S1} + {F1, S1/2 +...

+ {{F 0 , S1/ 2}, S1/ 2}+ {{F, 1/2} 1  0, S }, S1/2

+ {{{F F, S1/2},1/2}, 1/2} + F 0, S},S1 } {{F, 1 /2 } , 1/2

(22)

Equation (22) immediately yields to order 0:

F(L', G', H') = F 0 (L', G', H')

We shall group the different terms in equation (22) according to their order, but first

we need to develop some of the Poisson brackets in the following manner:

First consider

2 aS as
Fo S 1/2 S1/20' 1/2 L 3 al' + h

As S1/2 arises strictly from the existence of a resonance and the resonant terms are

functions of the resonant parameter 4' = a('+ g') + ph', we look for a solution
a,p

S1/ 2 = S1/ 2 (L', G', H', g', , ) such that

15



1/2 _ as1/2
8a' -p h'

Thus,

{ F, S1/ 2} = L,3 + /2

where y = (vP/a)-(p2/L'3)is a small parameter that can be assumed to be of order

1/2, so that {F0, S1/2} is of order 1 in equation (22).

Let us write

S1 1 1+ S 'R

where SJ 1 arises only from the effect of J2, which can be obtained by solving

F {F 0 SJ 1} +F 1  SJ= fFlp dt', ,

and SR comes from the existence of the resonant terms that combine their influence

with that of J 2. We shall look for a solution of the form

SR 1 = SR 1(L',G', H', g', i' )

such that

8SR 1

{ F' SR1= Y

is of order 3/2.

16



We can then write

y = y(L') ,

1 0  1/2}, 1 / 2} = --, S1/2

S 1/2 + ,/2 (24)

of order 1 of order 3/2

1 1 l SR1
{{FS0,Sl 1},S/2 {{F 0, SJ1},S 1/2} + y al s1/2

1 {IF02i 's I + IL- SR1 a51/2

SS 1 2 - 2 8L' 81' 81

1 Z aSR 1
+ y - s1/2 ' (25)

where

IFY and 1a SR1 aS,1 2
SI{F0, SJ, S1/2 and L' a' ae

are of order 3/2 and

2 Y i1-, s 1/2

is of order 2;

2 / /as33s as

a 1/2 1a}l / I12
S {{ F0 , S1/2}, S1/2}, S 1/2} 63 + 1/2

1 8s,, 2+ Y iS 1/2 , s1/2 1 (26)

17



where

1 32 1/ 1/ 1 /1/as 12 /2+ 4 1/2
6 aL',2 G- -- 2 8Lf( 1/2

is of order 3/2 and

SY a 1
/

2  1i/2 I S/2

is of order 2. In the expressions above,

2 2 2

aL 4 2 ,5_ L 8L L ,

We write F 2 in the following manner:

F 2 = 2 D(kl) sin2 O(kl) - D(kl) + Vn,m

k1 kl

where

0(kl) - 01 (k1 )

and D(kl) is a function of (L', G', H', g'); we assume here that g' is reduced to its con-

stant part go. The secular part of g' should be taken into account when the long-period

perturbations are removed.

We shall assume for the time being that our Hamiltonian contains terms for only

one particular value of k , and thus we can drop the k index for convenience.

We now proceed to splitting equation (22) by grouping terms of the same order.

A. We shall allow the first approximation of the determining function, S1/2, to
contain the resonant part of the Hamiltonian, which means that it will contain secular

terms. We then have, to order 1,

18



2as 2
i (__ 1/2 2

{F,' S 1/ 2 + W \81 + 2D sin 0 = 0

or

W 2 2 L

This is called the "resonance equation."

If

A= 2yL' 4

3p 2akl

(28)

k 2 12D 2
,4 2 '

L y

and we assume that S1/2 = S1/2(0), then by solving the quadratic equation (27), we get

1/2 _ 2 21/2 - -A ±A 1 - k sin , (29a)

or

81/2a/ = A(A - 1) 
(29b)

if

A=+ 1 -k 2 sin2 0 (29c)

We discuss this in detail in Section 4.

19



B. To order 3/2, we have the following:

8SR1 + 1/2 as 1/2 BSR
3/2 -- 2 ~ 1/2 L' 81' '

+ -,- los}1 {F 1, S1/ 2 }

1 1~/23 1 i 81/2 8 S1

6 ,2  1/2 +2 8La' ' 8 1 '+ 1/2

or

FSR 1  
f a 1/2 2 1/23

3/2= -a '- 81 1 1/2+ 6 L,2(30

1 I~ as SJ
+ {F1, s1/2 + { Fo' SJ1}, 1/2 ' a' (30)

We notice that in equation (30), some terms contain only S1/2 and are therefore due

only to the resonant tesseral harmonics, while others express the interaction between

the resonant terms and J2. Let us therefore write

SR= Z1 + Z2

where Z I contains only those terms that are functions of S1/2, and Z2 contains all

the others. If we write F3/2 X + Y, we then obtain two equations:

XZ s 2 a 3
1 + 1/2 S + 1 1/ (31)

x= 2 &1' ' 1/2 6 ,2\(1 /

and

1 1 + as 1/2 asJ1 +yAaz 2
Y={F' S1/2} 2 { FO 'SJI}'S /2 + 2 aL' a + 8, (32)

20



C. Finally, to order 2, we have

F 2s = F - D(L', G', H', g') , (33)

and

0 =~ n,m + {F 0'S 3 /2} + {Fo'S 2 } + {FO'S}

+ { ,s1/2 , 1 2  s 1} + {{F 1 , sl/ 2},S 1/ 2}

+ 1/2 sl/2 , Sl , Sl , -1/2
2 a-1/2 IS 1 /2 + 1/2 2 /2

+ L{-tL ( as 1/2)2  }S }+L {'(a1/2) {1/2 1S PS/}

+ 4' L 1 /2 ( 1/2 (34)

Equation (34) defines S2, S , and S3/2. The term S arises from the existence of

J2 only:

21

IFo, S 2 + {{F0, SJ1, Si1} + fFl, SJ1} = 0 ; (35)

S', which takes care of the nonresonant tesseral part, is obtained by solving

S. -- V, dt' (36b)

21



and S3/2 is due to the resonant tesseral harmonics, which we assume to be a function

of e, such that

as3/2
{F0 S3/2 = Y 81'

and

aS aS SJ aS3/2 1 1a1 1
+ Y , S1/2 + 2 ' 8' (-a'

+1 /2 S1/2 {{ 1}, sSR + {{ , 1/2}, 1/2

S81/2 S1 + 6 1/2 ,Sl 1/ ... (37)

6 {{ '' ' 6 '\i3t ' ('7

If the Hamiltonian contains more than one value of k1 (usually k1 = 1 is enough),
we can write

S1/2 = S1/2, k 1k1

Z = Z, k1k1
(38)

Z2 =E Z2 k,

k

We first obtain 81/2 by solving equation (27), replacing S1/ 2 by 81/2, k 1 for each

value of kl, and adding the different S1/2, k1 terms. This amounts to neglecting mixed

terms of the form
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as1/2, k 1  8S1/2, k2

in this theory.

We then solve equations (31) and (32) in the same way, again for each value of

kl, and add the perturbations obtained; the neglected mixed terms are reasonably

small.

If (L, G, H, I, g, h) is the set of modified Delaunay variables as defined in Section 2,

and (L', G', H', I', g', h') are the new variables, then after applying Hori's transforma-

tion, the solution of the equations of motion (14) becomes

L= L,+ ,- + 2 8,S +3, a,,S ,S +...

as 1 las
G = G' + 2'S- + . .aS S +

H=H' +-+2 a+ ,S +
(39)

aL' 2 ,S -.

S 1 i as ,

h = h' - S - .. ,
aH' 2 TaTH"

where S = S(L', G', H', I ', g', h') is the generating function

S= S1/2 + SJ + SR +..

Then, if

2
F' = + vH' - D(kl)+ F'

2L'
2

k

is the new Hamiltonian, we get
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dL' 8F'
dt R' '

dG' 8F'

dt h 0

S OF' 2 OF' 8D(kl)d!' F'
dt -L' ,3  L' -L' '

1

dg' = F' aF' 8D(k 1)
dt -G' - +  OG' '

k1

dh' OF' 8F' 8D(k)1
dt H' H' 1

1

where I 1 g', and h' are constants such that

'= Pt + I

g' = gIt + g

h'= h't + h'

with 1 , g0, and h' also constants.

In Section 4, we will give precise expressions of the perturbations up to order

3/2. The perturbations due to J 2 only are not considered in this paper, but can be

found in a classical theory of artificial satellites, for instance Brouwer's. However,
the interactions between J2 and the resonant tesseral harmonics are expressed with

the generating function Z 2.
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4. DETAILED EXPRESSIONS OF THE PERTURBATIONS

In this section, we drop the primes in the variables (L', G', H', ', g', h'), since

no confusion exists here with the original Delaunay variables, which do not appear.

4. 1 Expression of S1/2

As we already have seen,

81/21/2- A(A- 1)

where

A= E 1 - k 2 sin2  , =

so that

0

S1/ 2 =-A + EA 1- k 2 sin2 x dx . (40)

0

Let us discuss the value of E in equation (40). First, we consider the case when

k < 1. For any value of 0, 1 - k 2 sin2 0 > 0, and we are in the circulation case. In

order to have continuity with the classical solution, valid away from resonance, it is

necessary that S1/2 - 0 when k - 0. Since A -- oo when k - 0, then, necessarily,

E = +1. Otherwise, S1/2 -- o when A - oo.

For the case when k = 1,

A = E Cos0

f A(x) dx = sin e

0

In order to have continuity when k - 1 and k < 1, we must have E = +1.
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When k > 1,

2  2 1 11- k sin x 0-4-* - arcsin - x5 arcsink- k

and we are in the libration case.

We need to know the expressions of the elliptic integrals of the first and second

kind - F(O, k) and E(6, k), respectively - for the cases k > 1 and rr/2 < 0. For these,
we have the following formulas (Gradshteyn and Ryzhik, 1966):

E(mlT± , k) = 2mE ± E(, k)
(41)

F(mr± 8, k) = 2mk ± F(, k)

where E and K are the complete elliptic integrals of

E=E(!!,k)

F=F(-, k)

Then, ifk 1 = 1/k, k' 2 = 1 - k2 , and 61 is defined by sin 0 1 = k sin 6 , we have

E(O,k) = k I [k2E(',kl) + k' 2 F(',k1  (42)(42)
F(O, k) = k 1 F(0 ',k l ) .

Returning to our problem, we see that in order to have continuity when k - 1 and

k > 1, we can take E = +1 in this case also, because, from equations (42),

limE (6, k)= lim E(8',k) = E(O, 1) = sin e
k-- k-l

In conclusion, whatever the value of k, we can write S1/2 in the form

$1/2 = -AO + AE(O,k)
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To simplify this, we can set

12 = E (, k)

I 0 = F(6, k)

Then the derivatives of S1/2 are readily obtained:

as1 2l1/2
= aC2 y (A - 1)

as
1/2 d

I/ag - dc2Y (A- 1) + c Ya4 (I2 -I

as 1/ 2
S- pc 2 y (A - 1)

(43)

S= ( - 8 )+ 8c 1  I -0) +2 (A-1) + (c2 yal - 4c 1 Y) (2- 0)

81/2 = c2 P2 (A - 1) + c2 a 2 (12 - 10 )

as
1/ 2

H yc 2 p 3 (A-1) + c2 a3 (I 2 -1 0)

where

4  c 2

2  2 1 L

and

1 8aD =
1  D Lt ' p1  8L

1 D 8(44)
a2 D ( P2 G (44)

[eq. (44) cont. on next page]
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1 aD 
a3 D H ' 8H

a 1 aD p = (44)
4 D 8g '4 g

d= p +p4

To calculate the elliptic integrals, we use the following expansions (from Gradshteyn

and Ryzhik):

r 2
0<0< , k < ,

F(8, k) = (-1/2) (-k 2)m t2m() (45)

m=O

00

E(0, k) = (12) (-k 2) mt2m()

m=O

where

t 0 ( ) = 6 ,

t2 () = 2 (8 - sin e cos e)

2m -1 1 2m - 1 (46)
t (0) = 2m -1 t (0) cos 8 sin 2 m-1 y (46)
2m) 2m t2(m - 1 ) 2(8 )  2 m

(-1)n (a)n

in which

(a)n= a(a+].)--- (a+n-1) , n= 1,2,...

(a) 0 = 1
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and

(1/2)m (1/ 2 )I k2m

K(k) = +m: m'2 E m! m!
m=l

00o (47)

S E 1 (-1/2 k2 m
E(k) 2 (1- 2m) m -

m=l

4.2 Expression of Z 1 and Its Derivatives

We first calculate the Poisson brackets that appear in equation (31). After some

algebra,

as1/2 1/22 1() Esin e cos 0
al ,S / 2 } -c2 y (A-1)( 1)+k (10  n A

+ 4acly (A-1)2 +c 2 xy(A-1)(A--1)

+ (i2I )  c2 xk2 sin O cos0 + 4aclyk 2 (-0) sin 0 cos l
2 0) c2 A 1 2 A

(48)

where c2 , y, k, and A are as defined earlier, and

L
,3

1 3p2a '

x = (da2 + aal+ Pa3 - a) , (49)

d = p+p 4  2
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The equation that gives X and Z 1 is then

Z1 ac2Y 2A 1 -1+k 2  -) sin 0 cos 0
X=A /-- + 2 (A-1) 1  +  (0 A

2 ( 1  2 sin 0 cos
+4acly (A-1) + c2 x  (A-1) A- -) + c2 x k2 (12- 0) A

1 32 A - I )3 4Clk2 sin 0 cos 0
3 M 2 c2 (Y (A) + cl (12-0) (50)
3 8L 2

Since (A- 1) is periodic in 0, we do not find any constant terms:

X=0 .

We assumed earlier that SR 1 was a function of 0, and we will now assume that Z is

a function of 0 only. Therefore,

1 l 88 a laz ' -6 I1 E) 2 8 '

and the following equation gives Z 1:

18Z1  (A - 1) 1)+ k 2 (I- e) sin 0 cos 0 + 4aCl2 (- 1)2

= -c 2 y (A-) - 1) +  ( 0  A +4acy (-)

1 2 sin 0 cos 0
c2xy (A - 1 )+ c2yxk2 ( - 0) Acos

+ 4acl yk2  2- sin cos 0 4 acly ( A  - 3A 3A 3 - . (51)

In order to integrate this equation and obtain Z 1, the following expressions are useful:
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x sin x cos x dx _xA(x) + 12 (x)

/1 -k2 sin2 x k2  k2

I2(x) sin x cos x dx A(x) I2 1 k2 k2f --1-k--2 s
-  - + - - " x + - sin 2x , (52)

IO(x ) sin x cos xdx IO A + x

J V1 -k 2 sin 2 x  k2

Thus, by setting

q1 = acly and q 2 
= c2 yx

we obtain

Z1 = c 2  I2 (2+q2+8ql ) -[3 + q 2 (20 + 2q
- -'1 3 + 2 3 q2]

2
- sin 2 l q2) + AI2 (q2 2 +4 ql

) - e (1+4 ql)

+ 10 (1-q2 q ) +  I (1 - q 2  (53)

Then the derivatives of Z 1 with respect to the variables L, G, H, 1, g, and h are

8Z 1  aI2 [2 + q 8q 1 
+ A(q2 +4q l

- ax2

S[3 20 k2 20
X-- 3 3 - 1  (- q + 2 q2 ) + A(1 +4q,

+ 1 - q2  1 + A(1 - q2 )]
a3

+- (2 + 4q,) - (1 + 4q1)+ 0 (1 -q2

20 q, + 2 (k)2 80 18k2

- 1+ 2) 2 x cos 26 + -- sin 20)

+ -2 + k2O - - sin 20 + AI - I - AI (54)
ax (12 2 2 0 0)

[eq. (54) cont. on next page]
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1 20( k 20 k2 4
+E(c 2 y 812 a 6 3 4 sin 20 + 4AI2 - 4 A 0

_ 2
+ (4 cly+)i(2+q2+8q)0 20 q- k(20q+2q

-4 sin 2 ( q + 2q 2 
+ AI2 2 + 4q)

- AO (1+4 q1) +I 0 (1 q2 -30 + (1 - q2 (54)

for X= L, G, H, i, g, and h, where

=1 if X= L' ,

= 0 if X L' ;

a 2
8A ax 1  k sin e cos (55a) a
aX 2 A A ax (55a)

aI2 a a
8= A+ I2 -0) ; (55b)

10 1 88 ax
X A X +  (I2 - )

with
0

dx k 2  sin 0 cos 0,) (55I_2( f 3 1k2 (55cA
0 1-k

X c2 -X + E 4 cY +)x ; (55d)

88 P1  80 _a

TD 2 ' T 1 = 2

80 W 2 80 P4
8X G-' 2- ' g' 2 (55e)

a= P3  8e
81H' 2 ' 8h' 2
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0 if X= ' or h'
4 2

a L if X= L'

ax = a 2  if X= G' (55f)

a 3  if X= H'

a4 if X= g'

and

ax 1 8a 3  a2 P4 (55
5X 2 X ax ax ax aX L2)

4.3 Expression of Z 2 and Its Derivatives

From equation (32) and from the fact that { F, SJ1= - Flp, we can derive Z 2 as

follows:

1 aZ2  1 1/2 SJY={FI'S 1/2}-.2{Fp'S /2 } +yA-"-- 2 8L 8( 8 . 5

Here we can neglect Flp, the periodic part of F 1 , as it is of order 1 in eccentricity

and therefore very small for the satellites we are dealing with. We then have

aZ

Y = s IS1/2 + Ya AI (57)

Since there are no constant terms,

Y=0 ,

and therefore,

az ( as as as
b + b2 g 3+ b (58)

where
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8Fls s 3J2 P 4R 1 3 H2)
b + 51 8L 3 4  4 4 2GL G

aF1s 3 J2 4 R 1 5 H2

8F1 s 3J 2p4 R
2H

b -+
3 8H 2 L3 G 5  '

and, since Z2 is assumed to be a function of 0,

Z 2 2c 2F - I
b- a (bl + b2 p + b3 d) + b 2 a4  (59)

If we write

2c
B 1 = -- (bla + b 2 d + b3 P)

2c 2  (60)
2

B 2 =-- b2 a4

we can obtain Z2 from equation (59):

12(x) - (x)

2 1 0) A(x)
0

Now we can write the integrals (Gradshteyn and Ryzhik, 1966)

I0 (x) dx =I

0 Io(X) 2

0 (62)

(x) I 12E (I0)dx x- + log
0 A(x) 2K +lo (0)

34



where E and K are complete elliptic integrals of the first and second kind, respectively,

and E is the following theta function:

02

9 (u)= 1+ 2 (-1)m qm cos (2 my)

m=1

in which

q= exp , k'= , (63a)

and

vru (63b)
2K

The derivatives of Z 2, then, are

aZ 81 aB
ax B  ax ax( E3

8B2  (12 0
- I ) ae 0 I (X) (64)

+ jx dx + B 2 _ 5X A + B2 A ,(X)

0

where X = L', G', H', ', g', h' and, if k' 2 = 1 - k2

aX 0 Ik 2 k2 sin 0 cos + k2 sin2 ]
S(X) = I2 2 0 I 2 - (I2-I 0) A 2

2k'

aB 1  2c 2 (ab, ab2  ap4 ab3
SX - a + b2 + - _-B1 ; (65a)

aB 2c 2  aa )
a - a a4 2 X +bL 2

where
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E= 0 if X L'

S = 1 if X= L' ;

- 0 if X =' or h'
ax

8124 a4 8 414 14
-L' ' G'' H and- are given in Appendix A ;

ab1  8b2  8b 3
x - axX 0 if X=' orh' org'

8b 4b1

fL" L'

8b 2  3
- =- -j b2

8b 3  3
b7= T- Lb 3

S 3b 9 2 4 2 2 (65b)
a---- 3b1 9 2 pR H'

G' G' 2 ,4 ,6

ab2 4b1 1 5 J2 p
4 R 2 H,2

5G' G'+ 2 L3 G 7

ab3  5b3

Bb1 9 J 2 p4 R 2 H'

6H' 2 L,4 G,5

8b2  15 J 2 
4 R 2 H'.

6H' 2 L,3 G,6

8b3  3 J2 p4 R
2

l' 2 L,3 G,5
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We also need the second derivatives of Z 2 that appear in expressions such as

{az 2/aX, S1/ 2 } for X = L', G', H', ', g', h', as they are used in the final expression of

the perturbations. Their equations follow:

a2z2 aB / 01 8I \a I
a2Z2 _ 1 aS 21 (2 2 10
8X 8Y =Y 8-X -X + 0 B 1 8X 8Y 8"X 8-Y/2 IT - I Bax Bay0 B Iax a ax ay

2 2 2 Il -Ia 2B 2  12 2-I10 B2 + aB2 e (2 1
+ - a adx +- (Y) + A

0

+B a 2o0 12- 1 +B a(12-10) L - (IO/aY) 1 M
2 aX Y A 2 X A 2 Y 2 -

+ 2 X) + B 0 X dx (66)

0

where

a20 _ I21 if X and Y are L' , G', H', or g',
aX aY 2 aX aY

[see eqs. (A-9) in Appendix A]

826
aX Y = 0 if (X or Y) is (' or h')

82B1 2c 2  a2bl a2b 2  ab2 ap4  ap4 ab2da+ d+ 5 +
ax aY a \8XaY 8x Y aX aY &X 8Y

a2 2b 3 P) 1
+ ab+ ab)aX aY 2 X aY L' aY

[4cl (ab ab 2  p ab
+ _ a+ d+ b 2+ + Ba ax ax &X ax 2 2

in which

E=0 if X*L'

E = 1 if X= L'

7= 0 if Y L'

7 = 1 if Y= L'
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82b1 82b2 _2b3
0 2 8a 2b2  3  0 if (X or Y) = (' or g' or h')ax aY Y axa aY

82b 20
1 _ 20

aL'2  L'2 1b

a2b2 12

aL,2  L' 2 2

8L 2  L,
82b

aL'2 L'2 ;

-2. _2.d i 1 d 1  4 abl
8L' aG' G' aL' L' G

S2bl 2b1 4 blI
aL' aH' 8H' aL' - - L' aH'

a2b 1  3 3 8b1  27 J 2 4 R2 H, 2  (67)

G '2  b1 - - - L, 4 G,7

2bl 82b1 45 J2 P R 2 H'
aG' 8Ha 8H ' 8G' 2 4 5

all2  2 L 4 L G'G5

82b1 9 J2 P 4 R 2

8H,2 2 L4 G,5

82b2 a2b2 3 8b2
8L' aG' aG' LL' L' 8G'

a2b 2  a2b2  3 ab2
L'a H' H' aL' L' 8H'

82b2 _ 10 5  2 4 R 2 H'2  4 8b2 4
oG,2 2 L,3 G,8 G ' -G + G2 2'

[eq. (67) cont. on next page]
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82b 2  82 b 2  4 ab 2  15J2 p R2 H

G' 8H' aH' G -G' H L,3 G ,7

82b 2  15 J2 4 R 2

aH,2 2 L,3 G 5

82b 3  82b 3  3 ab3
8L' 8G' aG' L' L' aG'

82b 3  2b3  3 Db3

aL' 8H' H' DL' L' i'

2b 3  30

G,2 2G' b 3

82b 3  2b3  5 ab3
OG' 8H' - H' DG' -G' -H'-

(67)

82b

8H,2

22a)
0 a ( 1 I x

8X 8Y- 8X 8Y 2 2A2 8Y 8X 2 -2 0

ax [0 1 (2 k2 sin 0 cos 0 k2 sin cos e aA

+- [ k, 2 \Y Y A A2

2 cos 20 k 1 ak2 ( k2 sin 0 cos
-k+

4A Y k,4 Y 2 A

a 2 2Bb ab Da ab Da 4 DB
2B 2  2 2b2 82 4 b2 a4 E B2

xY - a aX aY a4 X 8Y Y ax L' Y

[+ 8 \~X a4 + b2 /X L2 •
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Note: In the expression a2 z 2/aX Y, we have neglected the term

e

2 f Y 8X dx
0

which is a very small quantity.

We also give the second derivatives of S1/2, so that we can calculate Poisson

brackets:

{as1/2 i a1/2 ) S1/2)
ax ,\ 1/ 2  , a ,Z~ , Z2

If the first derivatives of S1/2 are in compact form,

1 / 2 =12=x 2 c 2 Y X -X + (12 - 0) 8c 1 +)

where

E = 0 if X* L' and E = 1 if X= L'

then

1/2 = 2 c 22 8 2
a8X a 2 2

Y \(X Y +ax ay Y -a ( ay+

[,~.a 2 2 86 L22 ' '

where

77= 0 if Y * L' and 7 = 1 if Y= L'

and

2I 2  1 ax A aPx Px A ax(2 aI0
8X 8Y 2 8Y (I2-I0)+2 8Y + 2 8Y Y Y
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5. REMOVAL OF LONG-PERIOD TERMS

If we do not assume that g' is constant, as we did in Section 4, then, after

eliminating I' and h', we are left with the following system of equations:

dL' 8F d I' 8F
dt 8 dt 

dG' aF dg'= F (68)
dt ag' ' dt 8G'

dH' 8F dh' aF
dt 8h' dt - '

where

F = F0 + F1 + F2

F =F + v H'
* 2

2L'2 (69)

F 1 = F 1 (L', G', H') ,

F2 = - D(k) = F 2 (L', G', H', g')

k1

We now proceed to remove g' from the Hamiltonian, by performing a new canonical

transformation using Hori's method.

**
We introduce a determining function S' and a new Hamiltonian F such that, if

L", G", H", I ", g", and h" are the new variables,

**
F 0 = F 0 (L", H") ,

F 1 = F 1(L,G", GH")
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and

* S' +F*=F**
{0, S}+ F2 2

**
Introducing a pseudotime t , defined by

* - (L", G", H")
dt

or
,-1

dt pdg" with p - -a

**
we can solve for F2 and S':

** *
F 2 =F2s

* s' fF* **
{F0, S'}=- F2p S F2p dt

**
Let us find the secular and periodic parts of F2 . By using expressions for only one

**
fixed value of k1, the complete expressions of F2 and S' are then

* = F *(k) , S' = S'(kl )

k1 k1

We can assume that kI is fixed and can drop the index k1 in the following derivation.

We then have

F2 = -D

where

D2 =( A. cos + ( Ai sin 2
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in which

Ai = S(k, k0 ) A(k, k0 , x) ,

i = (ko - 2x) g - Akl , k0

and the summations are taken over values of x and k0 [see eqs. (8) and (9)]. Hence,

D2 +2 A.A - E A.A 2sin2 11 < <
i i<j i<j

= A 1( 2 4 A.A sin2 [(i -j)/2]

To the first order,

) 2 A A sin2 i 2)/2

D=ZA A.A. A.A. cos (4i $

1Ai A.
1 1

Therefore,

F 2s= E A  A. ,i  (70a)

ZAi

A.A. cos (i )

F = -E i 1 ] (70b)

2p Ai

and
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SA.A. cos ) A.A. i sin ( - )

2=- P (ki 2 x)i - (k- 2 x).j

EA 1  
(70c)

If we set (k0 - 2x)i - (kO - 2x)j = aij, then

as as

S2 A.A cos ) ;

- EA i i<j

and, if X = L", G", or H",

as2  (A.A. + Af A.) sin (4 -4
-2 P 1 , X 1, x 3 1

8X EAI- A aij

X 2 -, A.A. sin i - i )

+_Pa x.. (71)

E X 2 Ai x a . ] (71 )

where

aA. a S(kl, k) aA
Ai, x ax X A(kl, k 0 , x) + S(k 1, k 0) A (k1 k , x)

[see Appendix A, eqs. (A-2)]

aF2 _-(A.A. + A. A.)
x 1 -Ai 1, i, x 1 2 A iA A i,x

A 44
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The new Hamiltonian becomes

** ** ** **
F = F + F 1 +F 2

where

2
** = P + vH"

2L

** (72)
F = Fls (L",G",H") , (72)

F2 = F2s (L", G", H")

and the passage from the old variables (L', G', H', H', ', g', h') to the new ones is given

by

L'= L"+ + " S' +... ,

aS' 1 f aS' }
G'=G"+ ,,+ ,S' +.

H'=H" + as + l (a, S'  + , (73)

' =g aS' 1 aL, S' -
I'= " 8L" 2 aL"S' -... ,

a, ,, S' 21 aH"S'

The new system of equations is given by

dL" aF d. " aF
t- =a" -  ' dt = aL"

** **
dG" aF dg" F (74
dt ag" dt - (74)

** **
dH" aF dh" aF
dt - ah" ' dt aH"
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** **
and, since F = F (L", G", H"), the solution is

= L= constant

G" = G0 = constant

H" = H" = constant
(75)

g"= g + g",t ,

h"= h + h",t ,

where I", g", h', I ", g~, h" are constants and

F** 2 Fls aF2 s

1 =L" L,,3 OL" OL"

** Fs 8F

O F is 2s
g1 - G" aG" (76)

** 8F 8F
h" 8F aF s 2s
1 TR H"

Returning to the initial set of modified Delaunay variables (L, G, H, 1, g, h), we

now have

L = L' + 2 (L', G', H', 1', g', h') + { , S +

G= GI +-±S_ (L', G', H',V', g', h') + -1, +"

H= H' + a (L',G',H',I',g',h') +.1 ~ ,

H H' - h' (L', G', H', V, g', h')+ -2f ah S+

aS 1 as
= ' aS (L',G',H',',g',h') 2 {L,''S -

1 aG'
g= g' - as (L',G', H', ', g', h') - G' - ... ,

TH88 2 1 TS TH

where S= S1/2 + SJ + Z 1 + Z2) which, with the help of equations (28), gives the com-

plete solution.
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APPENDIX A

DERIVATIVES OF D(kl) AND 0(kl)

A. 1 First Derivatives

We recall the following equations from Section 3:

D2(kl ) = B2(kl ) + C2 (kl )

D(kl) cos zp(kl)= B(kl) , (A-1)

D(k 1 ) sin 0(kl)= C(kl)

Then, if X is any of the Delaunay variables L, G, H, or g,

8D 8B 8CD-= B -+Cax ax ax

If X * g,

klp+kO

Z- -- S(kl, k 0) A(kl, k0 , x) cos [k 0 - 2x)g - Ak, kl

k 0  x=0

klp+kO

a_ [S(k k0 ) A(k, k0 , x) sin (k0 - 2x)g -Ak

(A-2)

aA(kl' k', x) 8F nm (I) aI n,pq ( e ) be
5ax a axG(e) + F (I) axx a1 X n, m, p be X '

8S(klkO) 0 if X L
ax -2 (pkl+ k0 + 1)

L S(k 1, k0 ) if X= L

A-1



If X = g,

pkI +k 0

=ag - S(k 1 ,k 0 ) A(k,kO, x) (k0 -2x) sin [(k0 -2x)g - Akp k

k0  x=O

Pk I + k 0 (A-3)

ac= E S(k k 0) A(k 1 k0 x) (ko - 2x) cos [(k0 - 2x)g - Ak k0 ]

k0  x=O

For the derivatives of O(kl), we have

C(kl) = D(kl) sin O(kl) ,

so that

aC(kl )  a(kl )  aD(kl)

ax D(k 1 ) 5x cos 0(kl) + sin $(kl) (A-4a)

and

a(kl)_ 1 aC(k 1
)  1 aD(kl) )]

ax B(kl) LX D(kl) aX (1

As we did in Section 2, we can now write

1 D 1 aDa 1 - (k 1 )  a E (k )1 Dl(kl) aL 1  2 D(kl) (G ( 1)

1 aD 1 aD
3  D(kl) aH(k1) , 4 D(kl) ag (k) ,

pl = L (kl) 3 = H (kl) '

= (k= (kl)

2 G A-2 1

A-2



A. 2 Second Derivatives

Let us drop the index k1 for simplicity:

D X 2 aX aX

a 1 8D 2 1 8D) B 8C
aY \ 8/ 2 D aY B8X 9X

+ aB aB a a C + B (A-5)
2 -Y 8X 8Y 8X +  X 8Y 8X 8Y

If Y g and X f g, then

aY=- 8x ay(SA) cos [k 0 -2x)g-Akl, k0 (A-6a)

k0  x

and

ax2aY= ax a(SA) sin k 2x)g -Ak, k0 (A-6b)

k0  x

If X * g and Y = g, we have

a 2 B \' 8SA
ax ag2B (kO -2x) sin [(k- 2x)g - An,m ]  (A-7a)

k0  x

and

x8g = SA (k - 2x) cos [(k - 2x)g - An, m (A-7b)
k 0  x

A-3



If X= g and Y = g, then

8 - E SA(k - 2x)2 cos (k0 -2x)g -Ak, k0 (A-8a)

8g2 k x 1

and

2 2
2 - SA (- 2x)2 sin (k- 2x)g - Akl, k 0]  (A-8b)

0 x

We find the following second derivative of O(kl) from equations (A-4):

B 8 2+ B +C D 1 aD 8D) a2C (A-9a)
8Y ax 8X 8Y aY D aX 8Y D 8X aX Y '

so that

0 1 82C 8B 1 8D C D (A-9b)
_Y8XC C 2_ (A-9b)

8X 8Y B L"X 8Y 8Y 8X D aX Y Y D X

A-4
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